ثانوية: وريدة مداد – الحراش

دورة : ماي 2019

وزارة التربية الوطنية

امتحان تجريبي لشهادة بكالوريا التعليم الثانوي

الشعبة: آداب و فلسفة + لغات تجريبية

المدة: 02 سا و 30 د

اختبار في مادة الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

التمرين الأولى: (06 نقاط)

.r متتالية حسابية متناقصة حدها الأول $u_{_0}$ و أساسها .1

$$u_1^2 + u_2^2 + u_3^2 = 210$$
 و $u_1 + u_2 + u_3 = 24$: u_2 **

r = -3 و $u_0 = 14$: نضع .2

. (u_n) عين عبارة الحد العام للمتتالية

$$\frac{u_{n+4}}{n} = \frac{2}{n} - 3$$
 ، n ب عدد طبیعي غیر معدوم n معدوم نابه من أجل كل عدد طبیعي غیر معدوم

. التي يكون من أجلها العدد
$$\frac{u_{n+4}}{n}$$
 صحيحا نسبيا .

$$S_n = u_1 + u_2 + \dots + u_n$$
 : د - احسب بدلالة n المجموع

$$v_n = 2n - u_n$$
: با کن (v_n) متتالیة معرفة علی (v_n)

 (v_n) استنتج اتجاه تغیر المتتالیة **

$$S_n = v_1 + v_2 + \dots + v_n : (**)$$

التمرين الثاني : (6 نقاط)

$$c-a\equiv 6$$
[8] ، $b\equiv 34$ [8] ، $a\equiv -5$ [8] : ما عداد صحيحة تحقق c ، b a

 $a: \mathcal{C}$ على b ، $a: \mathcal{C}$ على 8 على 8 -1 عيّن باقي القسمة الإقليدية لكل من $a: \mathcal{C}$

 $a imes b+c^{34}$ على a^3+2b-c على $a imes b+c^{34}$ على $a imes b+c^{34}$

8 عيّن فيم العدد الطبيعي n الاقل من 26 حتى يكون العدد a^3+2b-c^n+n+1 مضاعفا للعدد a^3+2b-c^n+n+1

4 . 3^n على العدد الطبيعي بواقي قسمة العدد 3^n على 4

استنتج باقي قسمة العدد 2 + 3²⁰¹⁹ على 11 .

التمرين الثالث: (8 نقاط)

$$f(x)=-x^3-3x^2+4$$
 : ب $]-\infty;+\infty$ المعرفة على المجال f المعرفة على المجال المحالة والمحالة بالمحالة المحالة ا

.
$$(0; \vec{t}; \vec{j})$$
 متجانس و متعامد و متجانس متعاهد البياني في معلم متعامد و متجانس البياني في معلم

.
$$-\infty$$
 عند $+\infty$ عند $+\infty$ و -1

. احسب
$$f'(x)$$
 و أدرس إشارتها -2

- . ادرس اتجاه تغیر الدالة f ثم شكّل جدول تغیراتها -3
- 4- بيّن أنّ منحنى الدالة f يقبل نقطة انعطاف يطلب تعيينها f
- . $x_0=-1$ النقطة ذات الفاصلة (Δ) ماس المنحنى (c_f) عند النقطة ذات الفاصلة -5

$$f(x) = (x+2)^2(1-x)$$
 : لدينا x لدينا عدد حقيقي x لدينا -6

- . عيّن فواصل نقط تقاطع المنحنى (c_f) مع محوري الإحداثيات -7
- 8- ارسم المستقيم (Δ) و المنحنى (c_f) في نفس المعلم السابق .
- . f(x)=m عدد و إشارة حلول المعادلة m عدد الحقيقي m عدد و إشارة حلول المعادلة

الموضوع الثاني

التمرين الأول: (06 نقاط)

يحتوي صندوق على 6كرات لا نميز بينها باللمس مرقمة من 2 إلى 7 .

نسحب بصفة عشوائية كرتين في آن واحد من هذا الصندوق ، ونهتم بمجموع الرقمين المحصل عليها .

1) عيّن مجموعة الإمكانيات .

2) أحسب احتال الحوادث التالية:

A: الحصول على كرتين مجموع رقميها 9 .

B: الحصول على كرتين مجموع رقميها أكبر من أو يساوي 5.

C : الحصول على كرتين مجموع رقميها مضاعف لـ 3 .

D : الحصول على كرتين مجموع رقميهما قاسم لـ 12 .

التمرين الثاني : (6 نقاط)

$$3u_{n+1}-u_n=12$$
 : و بالعلاقة التراجعية $u_1=3$ بـ \mathbb{N}^* بـ $u_n=3$ متتالية عددية معرفة على

 $v_n = u_n - 6$: غير معدوم غير عدد طبيعي المعدوم غير معدوم

ullet . $oldsymbol{v}_3$, $oldsymbol{v}_2$, $oldsymbol{v}_1$, $oldsymbol{u}_3$, $oldsymbol{u}_2$, $oldsymbol{u}_2$, $oldsymbol{u}_3$) احسب الحدود

. $\frac{1}{3}$ أثبت أنّ (v_n) متتالية هندسية أساسها (2

 v_n بدلالة v_n أكتب عبارة v_n بدلالة v_n

 $L_n = u_1 + u_2 + \dots + u_n$ و $s_n = v_1 + v_2 + \dots + v_n$: احسب بدلالة n المجموعين (4

التمرين الثالث : (8 نقاط)

.
$$f(x) = \frac{2x+3}{1-x}$$
 : ب $\mathbb{R} - \{1\}$ على f

. كما هو موضح في الشكل أدناه $(\,C_f\,)$ تمثيلها البياني في مستو منسوب إلى معلم متعامد متجانس $(\,C_f\,)$

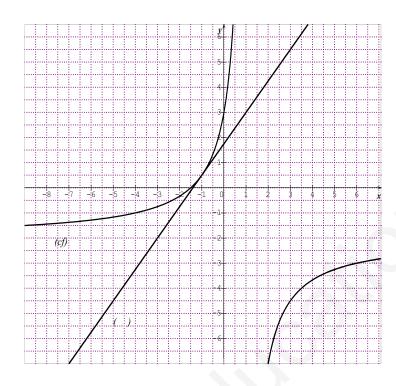
. معادلة له
$$y=rac{5}{4}x+rac{7}{4}$$
: حيث -1 معادلة له النقطة ذات الفاصلة -1 معادلة له الجزء الأول :

$$f(x) = a + \frac{b}{1-x}$$
 : 1 يختلف عن 1 يختلف عن 2 عين العددين الحقيقيين a و b حتى يكون : من أجل كل عدد حقيقي a يختلف عن 1 عين العددين الحقيقيين a

2) أحسب نهايات الدالة على أطراف مجال تعريفها .

f أدرس اتجاه تغيرات الدالة f

. عيّن نقط تقاطع المنحنى (C_f) مع محوري الإحداثيات ، ثم عيّن معادلات المستقيات المقاربة .


. معادلته يُطلب تعيين معادلته (C_f) يقبل مماسًا (Δ') يوازي المهاس (Δ) يُطلب تعيين معادلته (5

. (C_f) ييّن أنّ النقطة $\omega(1,-2)$ مركز تناظر للمنحنى (6

الجزء الثاني :

. $f\left(x\right)=m$: عدد حلول المعادلة عصب قيم الوسيط الحقيقى معدد حلول المعادلة

 $g(x) = -f(x) \; : \; \mathbb{R} - \{1\}$ ما المعرفة على المعر

بالتوفيق في شهادة البكالوريا